Mark scheme - Energy, Power, Resistance Circuits Symbols

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |

- Fig. 23.3 - p.d. split equally / (p.d. across each =) $3.0(\mathrm{~V})$
- Fig. 23.3-current $=\mathbf{0 . 3 6}(\mathrm{A})($ from the graph)
- Fig. 23.4 - p.d. $=6.0(\mathrm{~V})$ (across each or combination)
- Fig. 23.4 - current $(=2 \times 0.50)=$ 1.0(0) (A)
$0.36 \times 3(=1.08)$ is about $1.0(\mathrm{~A})$
0.36 A marks

Note $12(\Omega)$ will score the 6.0 V mark

Note this mark is for showing that I_{P} is about 3 times Is

Examiner's Comments

This question produced a range of marks, with most candidates securing 2 or more marks. For the lamps in series, it was important to recognise that the potential difference across each lamp is 3.0 V . From the $I-V$ graph, this meant a current Is of about 0.36 A . For the lamps in parallel, the current in each lamp was 0.50 A because the potential difference across each lamp was 6.0 V . This meant that the current $/ p$ was twice the current in each lamp; 1.00 A. The current I_{P} is about 2.8 times greater than current $/ \mathrm{s}$. This final step of the analysis was often omitted by most of the candidates.

A significant number of candidates scored no marks here and about 10% of the candidates omitted this question altogether.

Misconception

The most common mistake made by candidates, across the ability spectrum, was to assume that each lamp had a constant resistance of 12Ω in the series combination. A lamp is a non-ohmic component. At a potential difference of 3.0 V , the resistance of each lamp is about 8.3Ω.

Indicative scientific points may include instructions of this mark scheme for guidance on how to mark this question.

Level 3 (5-6 marks)
Typically, circuit including meters is correctly
B1

circuit diagram

1. resistor and LED in series
2. ammeter in series and voltmeter in parallel with LED
3. correct symbols for LED, ammeter, voltmeter, etc.

		There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Typically, circuit including meters is correctly drawn on Fig. 4.2(b). Action of only Fig. 4.2(b) circuit explained correctly. Purpose of 100Ω stated but value not justified. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Typically, circuit including meters is correctly drawn on Fig. 4.2(a). No correct explanations or basic information on the action of circuit or presence of 100Ω resistor. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear 0 marks No response or no response worthy of credit.		4. correct polarity of LED action of circuit 1. circuit completed on Fig. 4.2(b) 2. voltage across $A B$ can be varied from 0 to 6 V 3. some justification; e.g. potential divider circuit 4. in Fig. 4.2(a) circuit voltage only varies from 6 to about 5.6 V as resistance can only be varied from 110 to $100 \Omega(+$ LED $) / A W$ presence of 100Ω resistor 1. the current in the circuit is limited by the resistor so ensures LED cannot burn out 2. at 6 V the potential divider across AB gives 2 V across LED as its resistance is about 50Ω / AW
		Total	6	
9		$\begin{aligned} & \quad V=\frac{1.1}{6.8+1.4+1.1} \times 6 \\ & 0.71(\mathrm{~V}) \end{aligned}$	C1 A1	Allow $I=\frac{6}{(6.8+1.4+1.1) \times 10^{3}}=0.00065$ Allow 0.7 Examiner's Comments Candidates who use the potential divider equation invariably gained the correct answer of 0.71 V . Alternatively, some candidates correctly determined the current and then determined the voltmeter reading.
		As temperature of thermistor increases, resistance of thermistor decreases Total resistance of circuit decreases or current increases Greater proportion of p.d. across fixed resistor or p.d. across fixed resistor increase Reading on the voltmeter will increase	B1 B1 M1 M1 A1	Examiner's Comments Candidates were expected to explain how the voltmeter reading would change as the temperature of the thermistor increased. Good answers used a step-by-step approach. Candidates needed to explain how the potential difference of across the fixed resistor would change. It was essential that clearly defined terms were used - often candidates referred to V_{1}, R_{2}, or p.d. and resistance without indicating explicitly the

				meaning of V_{1}, R_{2}, or explaining which p.d. or resistance was being referred to.
		Total	6	
10	i		B1	two arrows needed not across resistor; allow a surrounding circle with arrows outside circle
	ii	1 from graph $3.0(\mathrm{k} \Omega)$ $\begin{aligned} & I=4.0 / 3.0=1.33 \times 10^{-3} \mathrm{~A} \text { or } \\ & R=2.0 / 4.0 \times 3.0 \times 10^{3} \\ & R=(6.0-4.0) / 1.33 \times 10^{-3} \\ & =1.5 \times 10^{3}(\Omega) \end{aligned}$ 2 at $2.4 \vee R_{\text {LDR }}=1.0 \mathrm{k} \Omega$ giving $2.5\left(\mathrm{~W} \mathrm{~m}^{-2}\right)$	B1 C1 A1 A M1 	allow $3.1 \pm 0.1(\mathrm{k} \Omega)$ accept 1.3 mA ; accept potential divider argument allow $1.5 \mathrm{k} \Omega$; special case: using 2.4 V in place of 4.0 V gives $\mathrm{R}=4.5 \mathrm{k} \Omega$; give 1 mark out of 2 ecf (b)(ii); allow potential divider or $\mathrm{I}=2.4 \mathrm{~mA}$; for special case: $R_{L D R}=9.0 \mathrm{k} \Omega$; give 1 mark out of 2 allow 2.4 to $2.6 \mathrm{~W} \mathrm{~m}^{-2}$ N.B. remember to record a mark out of 5 here Examiner's Comments More than half of the candidates knew the correct circuit symbol for an LDR. The most common error was to draw an LED. More candidates used a potential divider approach to solve the problem than calculated the current in the circuit; many gaining full marks. Those who misread the question and reversed the voltages required to switch the lamp on and off were given some credit for their answers.
		Total	6	
11	i	Arrow in anticlockwise direction	B1	Allow this mark for correct direction shown on diagram either on or off connecting wires Examiner's Comments This question required the candidates to appreciate that the sum of the emfs will lead to an anticlockwise conventional current. This question was answered well by the majority of candidates, however a number put two directions on, one from each cell. Misconception The unusual setting out of the circuit meant that some candidates were unsure whether parts of the circuit were in series or parallel.

	iii	$\begin{aligned} & \left(I=\frac{5.4}{60}=\right) 0.090 \mathrm{~A} \\ & (0.09 \times 120=) 11 \\ & \mathrm{C} \text { or coulomb } \end{aligned}$	C1 A1 B1	Allow ECF from (ii) Allow 10.8 Note 0.18 C scores two marks provided 0.09 A is seen Note 21.6 C scores one mark (for the correct unit) Examiner's Comments The majority of the candidates gained a mark for the unit of charge on this question. A common incorrect answer was 21.6 C where candidates had used the total current in the circuit rather than the current of 0.09 A in resistor Y . Some candidates did not change the time in minutes to a time in seconds.
		iv (11×5.4 or $0.09 \times 5.4 \times 120)=59$ or 58 (J)	A1	Note 58(.3) if 10.8 C used Allow ECF from (ii) and/or (iii) Not 60 Examiner's Comments Candidates who multiplied the charge by the potential difference easily gained the mark in this question. Other candidates who used different methods often made mistakes.
	b	$\mathrm{I}=n A v e \text { or } v \alpha I$ larger current through \mathbf{Y} than \mathbf{Z} ORA drift velocity in \mathbf{Y} is 1.5 times drift velocity in Z ORA	B1 B1 B1	Allow any correct rearrangement of $I=n$ Ave Allow $/ y=0.090 \mathrm{~A}$ and $I_{z}=0.060 \mathrm{~A} \mathrm{OR} / \mathrm{l} /$ $I_{z}=1.5$ ORA Examiner's Comments In this question, many candidates correctly quoted the equation and stated that the mean drift velocity was directly proportional to the current. The majority of the candidates realised that there was a larger current in resistor Y than resistor Z; however, few candidates realised that the current was 1.5 times larger and therefore the mean drift velocity was 1.5 times larger.
		Total	11	

13			Correct circuit with a battery, potential divider, lamp and voltmeter.		

